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A Study of Effects of Disease Caused
Death in A Simple Epidemic Model
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Abstract- This paper is concerned with various effects of disease caused death on the host population in an epidemic model of
SIR type. Various effects of disease caused death on the host population are studied in this epidemic model. The basic problem
discussed in this paper is to be describing the spread of an infection caused death within a population. It is further assumed that
there is no substantial development of immunity and that removed infectious are in effect cured of disease. The rate of natural
birth and death is assumed to be balanced.
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INTORDUCTION
nderson and May [7] studied the effects of
disease caused death on the population size in
model for a disease which spreads through

direct infection within a population whose size is
allowed to very in time. Two important new
phenomena a was revealed by their study.

 A threshold for the population size exists that
determines whether the population can sustain an
epidemic; fatal diseases are found to have a
regulating effect on the growth of the population.
Many subsequent works have fallowed this line of
research  [5].  Another  characteristic  of  this  body  of
research  is  that  the  emphasis  is  on  the  interplay
between  the  net  intrinsic  growth  rate  r  and  the  rate
of disease caused death  : it r >  then the disease it
likely to become endemic. To explain this
phenomenon, potential mechanisms   to endemicity
other then a large intrinsic growth rate r  need to be
studied. In recent study, we discovered that a long
incubation period incorporated into a SIR model
may provide an explanation for concurrence of high
pathogenicity and long life span of infectiousness.
We  took  different  approach  to  study  of  epidemic
models by assuming that the population a small
intrinsic growth rate r so that disease caused
mortality rate

 is  relatively  large.  This  approach  has  following
advantage.
1. If greatly reduces the technicality in

mathematical analysis, One may start with the
case  r  =  0  and  then  consider  the  case  of  small
positive r.

2. If  enables  us  to  isolate  those  effects  on  the
population that directly   related to the disease e.g.
we discovered our essential difference between a
model that incorporates an incubation period and
one  that  does  not.  Even  in  a  simple  model  that
does not contain an
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              incubation period, this new approach leads
to the discovery of several interesting
details not found in literature.

3. By keeping the mathematical technicalities
at  its  minimum,  this  approach  may  allow
our models more accessible to field
epidemiologist and hence encourage of
application of  mathematics in
epidemiological studies.

In the present work we demonstrate our
approach through a very simple model.  We assume
that  the  disease  spreads  through  direct  contact
among  the  hosts,  the  disease  has  no  incubation
period as considered in most of previous works [2,4]
and that the intrinsic growth rate of host population
is  zero  i.e  r  =  0  so  that  in  absence  of  disease,  the
population size remains constant. The mathematical
analysis of model is very elementary, and it provides
epidemiologically interesting details about an
epidemic. Also, we demonstrate that the kind of
phenomenon  one  many  observe  in  the  case  of  a
small positive intrinsic growth is essentially the
some as we obtained here.  In particular, this seems
to suggest that, an SIR model is essentially a model
for  an  epidemic;  it  does  not  provide  an
epidemiologically relevant mechanism for disease
endimicity.
For other studies on epidemological models with
varying population size closely related to the one we
consider her, see Greenhalgh [1] and Mena- Lorca
and Hethcote [6] and references there on. Other
models with varying population and disease- caused
death have been studies by Brauer [2], Bremerman
and Thieme [3], Gao and Hethcote [4], and Hethcote
[6], and Pugliese [7].
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FORMULATION OF MATHEMATICAL
MODEL :

The population is partitioned into classes of
susceptible, infectious and immune individuals,
with population N(t) is
           n(t)  = x(t) + y(t) +z (t)                (1)

Let us consider the per capital birth rate is a constant
‘b’ and all newborns are susceptible. The per capital
natural death rate assumed to be ‘b’ so that total
population remains constant in absence of disease.
Suppose the disease spreads through direct contact
between susceptible and infections individuals. We
assume  that  the    transmission  coefficient  per  unit

time by x(t)y(t). This is equivalent to assuming

that the contact rate between individual is n(t),
proportional to n (t).

The  disease  is  assumed  to  causes  death  to
infected individuals, with a death rate constant  .
Let the average infectious period for an infectious

individual be

1

 so  that  transfer  from  infectious
class to immune class is at a constant rate  . It is also
assumed that the disease confers permanent
immunity so that no transfer from infectious class to
immune class exists. Since vaccination is one of the
major means of control and prevention of many viral
infections, the effect of a vaccination strategy is also
considered. All susceptible individuals are
vaccinated at a constant per capita rate ‘p’. Based on
these modeling hypotheses, the following set of
differential equations is derived.
x’ = bn - xy –bx-px
y’ = xy – (b + r + ) y
z’ = ry – bz + px (2)
and
  n(t)   =   x (t) + y(t) + z(t)
The model (2) was one of many model proposed and
studied in [1], in which only a local analysis is
carried out. It is also related to a model studied in [5]
which does not consider vaccination.
Adding the equations in (2) gives
  x’ + y’ + z’ =  bn - xy – bx – px + xy-(b + r

                          + ) y + ry - bz + px

n’ =  bn - xy – bx – px + xy -by – ry - y + ry – bz +
px
n’ = - y           (3)

which implies that total population always decreases.

Observing  that  the  variable  z  does  not  appear  in  first
two equations in (1) we may simply study the
following system
         x’ = bn - xy – bx – px
         y’ = xy - (b + r + ) y            (4)
          n’ = - y
and determine the variable z from
          z(t)  = n(t) –x (t) – y  (t)
The feasible region for (4) is

G = {(x, y, n)  R        x + y  n }

It can be checked that G is positively invariant under
the dynamics of (4) which, together with the fact that
the right hand side of (4) is analytic in (x, y, n),
shows that the model is well posed.

EQUILIBRIUM POINT:

Setting the right hand side of (4) equal to zero, we
obtain the set of equilibrium Eo
Eo = { (x, y, n) G   y = 0, x = b/b+p n}          (5)

LOCAL STABILITIES:

To study the local stability of each equilibrium,
              P* = (bn*/b+p, 0, n*)  Eo,
we linearize the  vector field of (4) at P*. The
corresponding Jacobian matrix is

- bn*/b+p                b

J (P*) =           0 bn*/b+p – b – r -         0

0                      -                       0

whose characteristic equation is [J - I] = 0

b – p - bn*/ b+p                                 b

      0 bn*/ b+p – b – r -  -              0

      0              -                                     0 -

=  0

Or    (-b-p- ) ( bn*/b+p – b – r - - ) (- ) = 0

whose eigen values are

1= -b –p

-b-p
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2 = bn*/b+p – b – r -
3 = 0                 (6)

with corresponding eigen vetors
v1 = (1, 0, 0)
v2 = (a1, a2, a3)
v3 = (b, 0, b+p)    (7)

where
a1 =(b- bn* a2 / b +p) / ( bn*/b+p – p – r - )
a2 = bn*/  ( b+p) - ( b + r +  ) /      (8)
set
   n  =   (b +p) (b + r + ) / b     (9)

The local stability of  P* = (x*, y*, n*) is determined
by the sings of i’s. These are two cases arises:

CASE I :

1. P*  E0 and n*  n , then P* always has a 1-
dimensional manifold
   given by E0.

2. If n* > n, then P* has a 1- dimensional stable and 1-
dimensional
   unstable manifold.

3. If n* < n , then P* has a 2- dimensional stable
manifold.

CASE II :
If P* E0and n*= n then we observe that

subspace y=0 is invariant with respect to (6.2.4) and so
is the line defined by y=0 and n= n* for each n*>0. In
each of these lines P* is the global attractor in the line
y=0, n = n*.

RESULT:
The parameter
     n  =   (b +p) (b + r + ) / b  (b + p) x / b
is the threshold for the total population to sustain an
epidemic. Where the total population n(t) is much
below  this  value  so  that  x  <  x  ,  any  outbreak  of
infection, no matter its initial momentum y(0), will
sustain itself  and immediately decreases and
continues to decrease monotonically with time until
it  dies  out.  On  other  hand,  if   the  population  above
this threshold value, disease will sustain itself for
certain time, reach its maximum extent while killing
many of the infection and reducing the total
population  below  the  threshold  n,  and  start  to
decline and eventually die out.
If we set, each solution x(t) , y(t), n(t) to   (4)

y (max) = max y(t)

Then y (max) is achieved where y’(t) = 0, so
x (t) = (b + r +  ) /  =  x

where no vaccination is applied, namely P = 0 then x
= n. This is the loss from the infected class divided
by the rate of transmission of disease caused death.

 increases. Once again this implies that a faster
killing disease has less change to cause a large scale
epidemic.
If y (max) increases as transmission coefficient
increases. This implies that diseases with greater
transmission rate cause larger scale epidemics.
If p increases. y (max) decreases and it takes less
time  for  y(t)  to  achieve  its  minimum,  the  faster  the
susceptible are removed to the immune class, the
less virulent the disease becomes.
. Also x can used as an indicator as to whether the
epidemic has reached its maximum extent. After the
number of susceptible has decreased below x , the
disease will start to die down and eventually die out. If
y (max) decreases when the rate
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